

A Problem

Find digits A, ..., I such that

- 1. ABC + DEF = GHI,
- 2. A through I are distinct,
- and 3. Each of 1, 2, ..., 9 is used exactly once.

$$218 + 349 = 567$$

How many solutions are there to this problem?

Possible Approaches

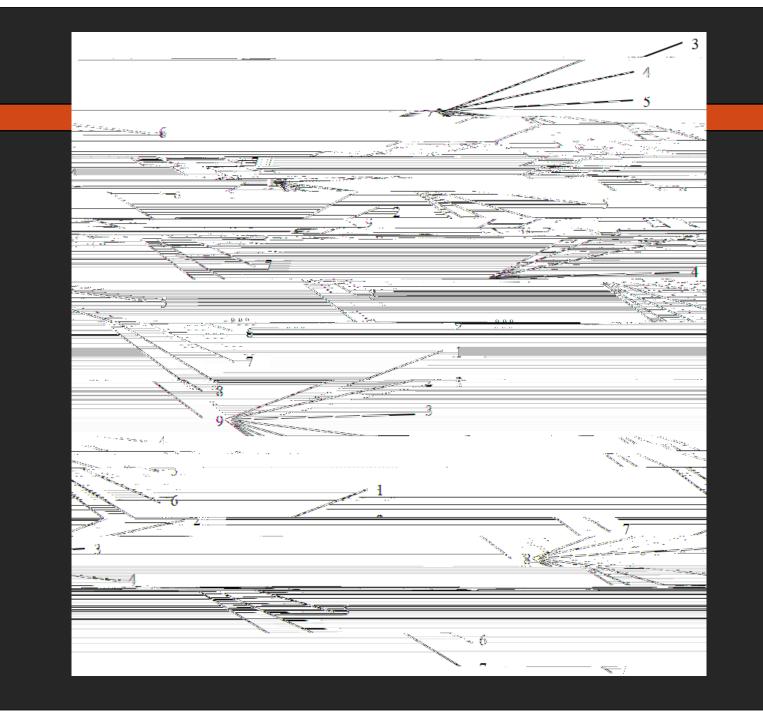
Count the number of possible sums

Count the number of possible addends Count how many solutions there are for a given sum

$$218 + 349 = 567$$
 $219 + 348 = 567$ $248 + 319 = 567$ $249 + 318 = 567$

A Little Counting

9(8)(7) = 504 3-digit numbers containing no Ossuch that all 3 digits are distinct.



A Little Counting

9(8)(7) = 504 3-digit numbers containing no O's such that all 3 digits are distinct.

But... the first digit of the sum cannot be 1 and cannot be 2. (Why not?)

What Else Can We Say?

The first digit cannot be 3 either:

```
1BC

+2EF

3HI

B + E < 10

So, {B, E} = {4, 5} and H = 9.

{C,F,I} = {6,7,8} is impossible.
```

What Else Can We Say?

6(8)(7) = 336 3-digit numbers containing no Ossuch that all 3 digits are distinct and the first digit is at least 4.

What else can we say?

We can use

to help.

Think remainders:

"7 is congruent to 1 mod 3" means

7 ÷ 3 has a remainder of 1

We can use

to help.

Think remainders:

"8 is congruent to 2 mod 3"
means
8 ÷ 3 has a remainder of 2

We can use

to help.

Think remainders:

"24 is congruent to <u>0</u> mod 3" means 24 ÷ 3 has a remainder of 0

We can use

to help.

Think remainders:

Any integer will be congruent to either 0, 1, or 2 mod 3.

How can we do arithmetic "mod 3?"

```
What is 7 + 10 congruent to mod 3?

7 1 (mod 3)

10 1 (mod 3)

So, 7 + 10 1 + 1 (mod 3).
```

How can we do arithmetic "mod 3?"

```
What is 7(10) congruent to mod 3?

7 1 (mod 3)

10 1 (mod 3)

So, 7(10) 1(1) (mod 3).
```

Back to the Problem

$$ABC + DEF = GHI$$

$$100A + 10B + C + 100D + 10E + F = 100G + 10H + I$$

 $A + B + C + D + E + F G + H + I \pmod{3}$

Also,

$$A + B + C + D + E + F + G + H + I = 1 + ... + 9 = 45$$
 0 (mod 3)

What could
$$A + \dots + F$$
 and $G + H + I$ be congruent to mod 3?
1: $A + \dots + F + G + H + I$

$$B + E + G + I$$
 6 (mod 11)

Look at B, E, and H:

ABC + DEF GHI

We will have different cases based on whether we need to carry from the ones place or to the hundreds place.

B, E, H	Carry?	
relationship		
B + E = H	None	

$$B + E + G + I$$

B, E, H	Carry?	
relationship		
B + E = H	None	
B + E + 1 = H	From Ones Place Only	
B + E = H + 10	To Hundreds Place Only	

B, E, H	Carry?	
relationship		
B + E = H	None	

B, E, H relationship	Carry?	Value of G + H + I
B + E = H	None	6 (mod 11)
B + E + 1 = H	From Ones Place Only	7 (mod 11)
B + E = H + 10	None	

Back to the Problem

$$412 \quad GHI \quad 987$$

$$7 \quad G + H + I \quad 24$$
 and
$$G + H + I \text{ is a multiple of 3.}$$

Also, G + H + I must be congruent to 6, 7, or 8 mod 11.

So,
$$G + H + I = 18$$
.

Possible Sums

459	468	486	495	549	567	576
594	639	648	657	675	684	693
729	738	756	765	783	792	819
837	846	864	873	891	918	927
936	945	954	963	972	981	

(Three of these don't work. Which ones?)

$$235 + 746 = 981$$
 $236 + 745 = 981$
 $245 + 736 = 981$
 $246 + 735 = 981$
 $324 + 657 = 981$
 $327 + 654 = 981$
 $354 + 627 = 981$
 $357 + 624 = 981$

How many solutions are there in all? What are they?

Try it!

Thank you! jwaustin@salisbury.edu